On the arithmetic-geometric-harmonic-mean inequalities for positive definite matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal inequalities for positive definite matrices

Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.

متن کامل

On Inequalities for Hypergeometric Analogues of the Arithmetic-geometric Mean

In this note, we present sharp inequalities relating hypergeometric analogues of the arithmetic-geometric mean discussed in [5] and the power mean. The main result generalizes the corresponding sharp inequality for the arithmetic-geometric mean established in [10].

متن کامل

Some More Inequalities for Arithmetic Mean, Harmonic Mean and Variance

We derive bounds on the variance of a random variable in terms of its arithmetic and harmonic means. Both discrete and continuous cases are considered, and an operator version is obtained. Some refinements of the Kantorovich inequality are obtained. Bounds for the largest and smallest eigenvalues of a positive definite matrix are also obtained.

متن کامل

A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices

In this paper we introduce metric-based means for the space of positive-definite matrices. The mean associated with the Euclidean metric of the ambient space is the usual arithmetic mean. The mean associated with the Riemannian metric corresponds to the geometric mean. We discuss some invariance properties of the Riemannian mean and we use differential geometric tools to give a characterization...

متن کامل

Geometric optimisation on positive definite matrices for elliptically contoured distributions

Hermitian positive definite (hpd) matrices recur throughout machine learning, statistics, and optimisation. This paper develops (conic) geometric optimisation on the cone of hpd matrices, which allows us to globally optimise a large class of nonconvex functions of hpd matrices. Specifically, we first use the Riemannian manifold structure of the hpd cone for studying functions that are nonconvex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1983

ISSN: 0024-3795

DOI: 10.1016/0024-3795(83)80005-6